Pulsatile Proptosis

Julia Elpers, MD

Grand Rounds
January 10th, 2020

Patient Presentation

CC

Red, proptotic eye

HPI

Consult from neurosurgery for eye injury with proptosis in a 74 yo WF who fell down a flight of stairs. She sustained many bodily fractures, facial and skull fractures, and subarachnoid hemorrhage. She is now intubated and sedated in the ICU.

History

Past Medical History

Squamous Cell Carcinoma

Migraine

Family Hx

Noncontributory

Meds

Sumatriptan, ASA 81mg

Allergies

Sulfa

Social Hx

-Never Smoker

-1 drink per day alcohol

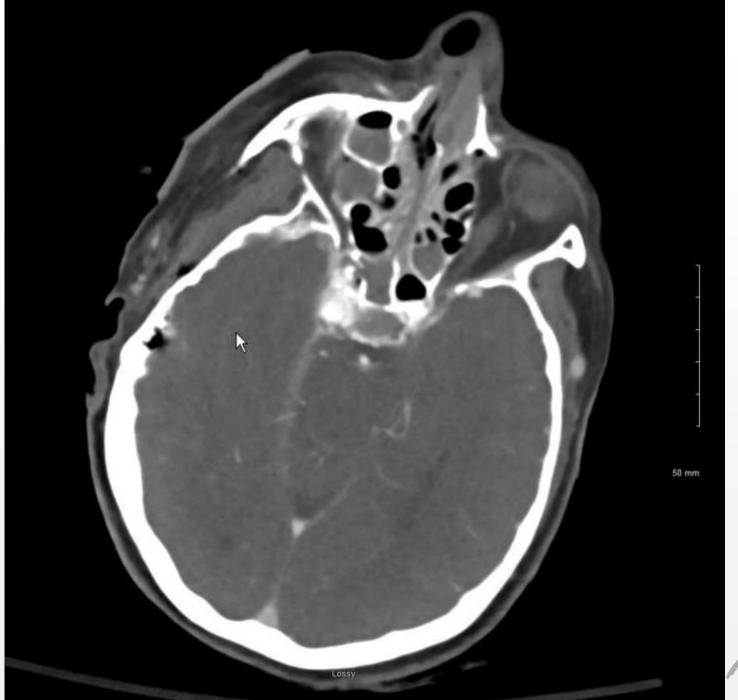
-No illicits

RoS

Unable to obtain

Physical Exam

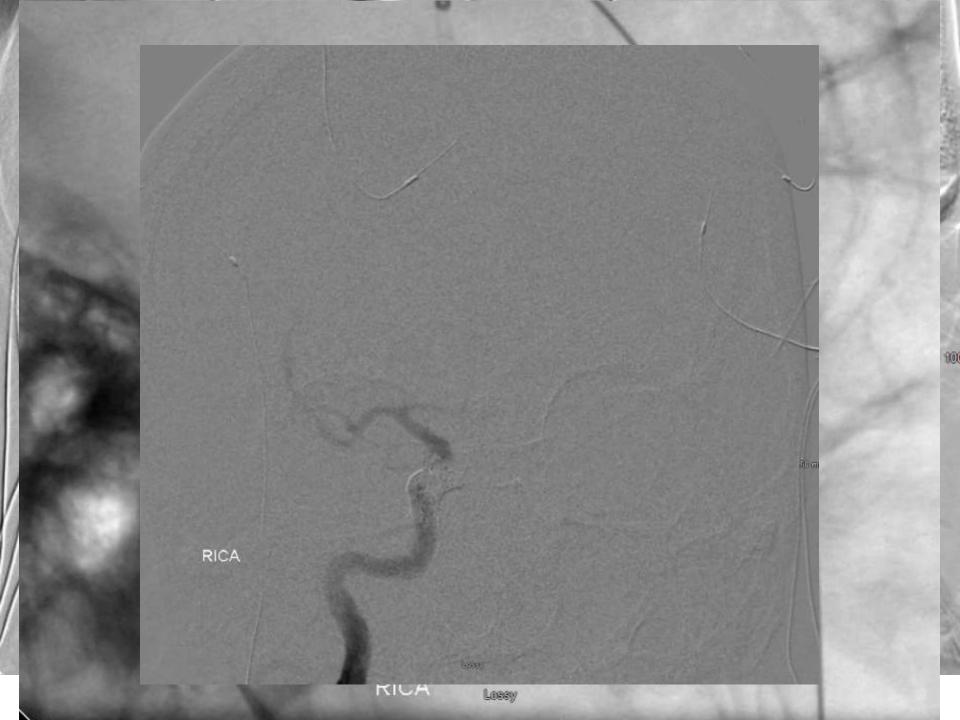
	OD	os		
VAscD	Unable to Obtain	Unable to Obtain		
Pupils	3+ RAPD	4→3mm		
IOP	55 mmHg	14 mmHg		
EOM	Unable to Obtain	Unable to Obtain		
CVF	Unable to Obtain	Unable to Obtain		
Lids	Ecchymosis, edema	Ecchymosis, edema		



External Exam

Assessment

- 74 yo WF intubated and sedated after a fall down flight of stairs sustaining skull and facial fractures and subarachnoid hemorrhage, now with pulsatile proptosis, severe injection and chemosis, RAPD, and retinal whitening with cherry red.
- Concerning for Carotid Cavernous Fistula and Central Retinal Artery Occlusion
- Differential Diagnosis of pulsatile proptosis
 - CCF fistula
 - Normal intracranial pulsation transmitted to the orbit due to skull base fracture



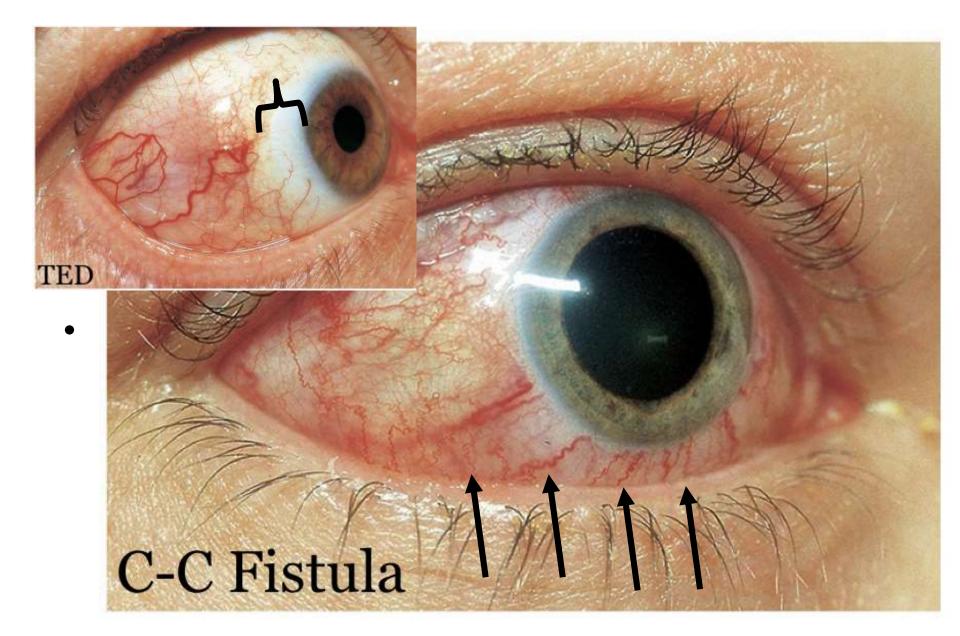
Plan

 Informed neurosurgery that clinically she appears to have C-C fistula and recommend neurosurgical intervention.

 Transcatheter embolization of a traumatic intracranial carotid-cavernous fistula with platinum coils

Follow Up

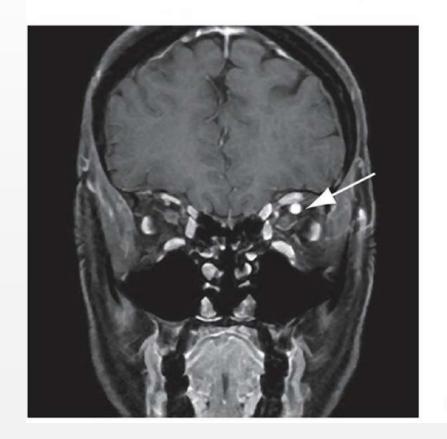
- Recovered well from systemic injuries
- Remains NLP
- Suffered CN III and CN VII palsies
 - Exposure keratopathy
 - tarsorrhaphy


Carotid Cavernous Fistula

Classification

- Anatomy: Direct (70-90%) vs Dural
- Etiology: Traumatic vs Spontaneous
- Velocity: High vs Low flow
- Majority are Direct Traumatic High Flow CCFs
- Dural CCFs
 - Low flow with communications from meningeal arterial branches to dural veins
 - Hypertension, Atherosclerosis, Collagen vascular disease, Childbirth

Signs and Symptoms



Possible Posterior Findings

- Dilation of retinal veins
- Intraretinal hemorrhages
- Optic disc swelling
- Disc hyperemia
- Retinal detachments
- Choroidal detachments

C

Radiologic Classification

- Type A (Direct most common)
 - Intracavernous ICA and cavernous sinus
- Type B (Dural)
 - Meningeal branch of the intracavernous ICA and cavernous sinus
- Type C (Dural)
 - Meningeal branches of the external carotid artery and cavernous sinus
- Type D = B+C

Complications

- Glaucomatous damage
- Venous stasis retinopathy
- Central retinal vein occlusion
 - Rarely CRAO
- Choroidal detachment
- Exudative retinal detachment
- Anterior Ischemic Optic
 Neuropathy

- Deterioration of vision
- Intolerable bruit
- Diplopia
- Proptosis leading to corneal exposure

Treatment

Direct CCF

- Endovascular techniques with Neurointerventional radiologist
 - Percutaneous transarterial embolization
 - Platinum coils
- Surgical Treatment with Neurosurgeon
 - Nonballoon embolization
 - Electrothrombosis
 - Craniotomy

Dural CCF

- Observation
 - 10-60% spontaneous closure
- New: Transvenous embolization as initial therapy
- Self-carotid compression
 - Compress carotids for 10-30 seconds several time per hour

Ophthalmology's role in treatment

Elevated IOP

- Topical antiglaucoma medications
- Peripheral iridotomy
- Filtering Surgery
- Panretinal photocoagulation in case of NVG

Prognosis

- After Fistula closure
 - Immediate resolution of ocular bruits and pulsations
 - Days to Months: Conjunctival chemosis, conjunctival arterialization, eyelid edema, Venous stasis retinopathy, Disc swelling
 - Immediate to months: elevated IOP
- Dural CCFs can reform while direct usually remains closed
- Direct CCFs may not have resolution of proptosis or visual loss

Md. Shahid Alam¹, Mukesh Jain², Bipasha Mukherjee¹, Tarun Sharma², Swatee Halbe³, Durgasri Jaisankar² & Rajiv Raman²

- Retrospective study
- Tertiary eye center in South India
- All CCF patients seen at center between June 2001 -June 2015
- 48 patients with DSA proven CCF

	High flow	Low flow	P value (high		
Characteristics	A*(n=8)	B*(n=6)	C*(n=7)	D*(n=27)	vs. low)
Mean age (years)	26.6	54.0	42	55.3	< 0.0001
Gender (M/F)†	6/2	4/2	4/3	14/13	0.440
History of trauma	7 (87.5%)	0	1 (14.3%)	1 (3.7%)	< 0.0001
Laterality (Unilateral)	7 (87.5%)	6 (100%)	7 (100%)	24 (88.9%)	1.000

Md. Shahid Alam¹, Mukesh Jain², Bipasha Mukherjee¹, Tarun Sharma², Swatee Halbe³, Durgasri Jaisankar² & Rajiv Raman²

	High flow	Low flow			P value (high
Characteristics	A*(n=8)	B*(n=6)	$C^*(n=7)$	D*(n=27)	vs. low)
Retinal vein dilatation	5 (62.5%)	4 (66.7%)	4 (57.1%)	13 (48.1%)	0.710
Intraretinal Hemmorhages	3 (37.5%)	3 (50%)	1 (14.3%)	8 (29%)	1.000
Preretinal Hemmorhage	1 (12.5%)	1 (16.8%)	0	2 (7.4%)	0.189
Vitreous Hemmorhage	1 (12.5%)	0		0	0.167
Macular edema	0	1 (16.8%)	0	3 (11.1%)	0.594
Choroidal detachment	0	0	0	1 (3.7%)	1.000
Retinal detachment	0	0	0	1 (3.7%)	1.000
Disc Hyperaemia	1 (12.5%)	3 (50%)	1 (14.3%)	5(18.5%)	1.000
Disc pallor	1 (12.5%)	0	0	1 (3.7%)	0.671

	High flow	Low flow			P value (high
Disease	A*(n=8)	B*(n=6)	C*(n=7)	D*(n=27)	vs. low)
CRVO [†]	0	0	0	2 (7.4%)	1.000
Glaucomatous cupping	1 (12.5%)	2 (33.3%)	1 (14.3%)	3 (11.1%)	1.000
CRAO‡	1 (12.5%)	0	0	0	0.167
ION	1 (12.5%)	0	0	1 (3.7%)	
TON	2 (25.0%)	0	0	0	

Md. Shahid Alam ¹, Mukesh Jain², Bipasha Mukherjee¹, Tarun Sharma², Swatee Halbe³, Durgasri Jaisankar² & Rajiv Raman²

Direct or Dural more common?

- Traditionally thought Direct 70-90%
- This study shows Dural:
- Why?
 - Decreased head injuries from improved traffic regulations
 - Greater sensitivity of modern imaging finding undiagnosed dural CCFs
- Most Durals were type D -> C -> B
- Late presentation of Visual impairment in Dural CCFs, requires high index of suspicion

Md. Shahid Alam 1, Mukesh Jain, Bipasha Mukherjee, Tarun Sharma, Swatee Halbe, Durgasri Jaisankar Rajiv Raman

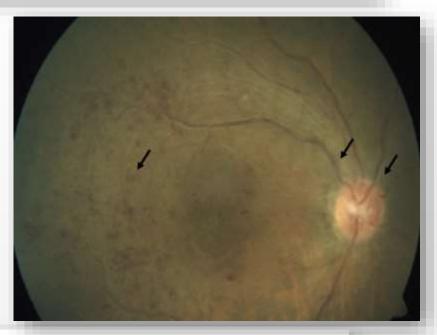
Mechanism of Visual Impairment:

Direct CCF

- Immediate
 - Traumatic optic neuropathy
 - Vitreous Hemorrhage
 - Central retinal artery occlusion
- Delayed
 - Ischemic OpticNeuropathy
 - Glaucomatous optic damage

Dural CCF

- Delayed d/t Chronic hypoxia-induced retinal dysfunction
 - Stasis retinopathy
 - Central retinal vein occlusion
 - Ischemic optic neuropathy
 - Glaucomatous optic damage
 - Combined retinal and choroidal detachment



Md. Shahid Alam 1, Mukesh Jain, Bipasha Mukherjee, Tarun Sharma, Swatee Halbe, Durgasri Jaisankar & Rajiv Raman

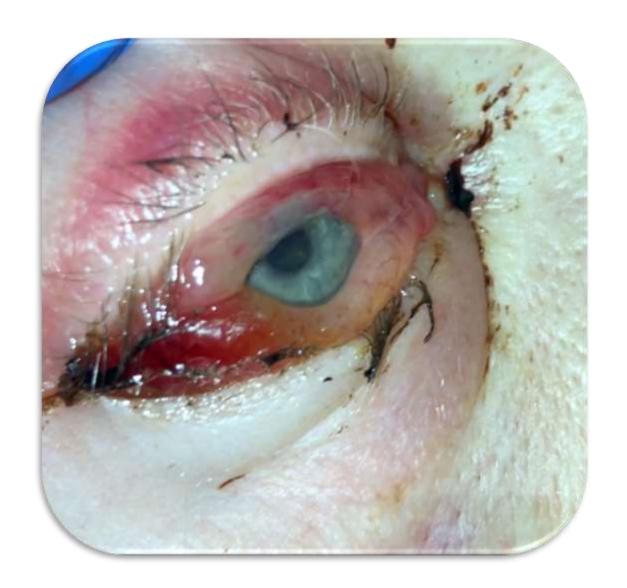
"3 point sign"

In Dural CCF:

- predict moderatevisual Impairment
- Retinal vein dilatation
- Intra-retinal hemorrhages
- Disc hyperemia

Visual	High flow	Low flow	p value (high			
Impairment [†]	A*(n=8)	B*(n=6)	C*(n=7)	D*(n=27)	Vs low)	
Mild	2 (25%)	4 (66.7%)	5 (71.4%)	21 (77.7%)		
Moderate	1 (12.5%) ION ^{††}	2 (33.3%) Stasis retinopathy	1 (14.3%) Stasis retinopathy	2 (7.4%) Stasis retinopathy	0.017	
Severe	1 (12.5%) GON ^{‡‡}	0	1 (14.3%) GON ^{‡‡}	1 (3.7%) ION ^{††}		
Blindness	4 (50%) [2-TON^;1-TS ^{\$} 1- CRAO**]	0	0	3 (11.1%) [2-CRVO [‡] ; 1- RD+CD [#]]	,	

Conclusions


- Consider Direct CCF in trauma setting
- Ophthalmology may be the provider to catch the dx
- Keep low index of suspicion for dural CCF as they may be subtle and present to clinic with "red eye"
- Consider the "3 point sign" venous dilation, intraretinal heme, disc hyperemia
- Don't throw away your stethoscope

References

- •Alam, M.S., Jain, M., Mukherjee, B. et al. Visual impairment in high flow and low flow carotid cavernous fistula. Sci Rep 9, 12872 (2019) doi:10.1038/s41598-019-49342-3
- Khator, P and Rismondo V. Diagnosis and Management of Carotid Cavernous Fistulas. AAO Eyenet Magazine (2020). https://www.aao.org/eyenet/article/diagnosis-management-of-carotid-cavernous-fistulas
- Gaillard, F et al. Barrow classification of caroticocavernous fistulae. Radiopaedia. https://radiopaedia.org/articles/barrowclassification-of-caroticocavernous-fistulae?lang=us
- Carotid Cavernous Sinus Fistula. AAO. Basic and Clinic Science Course. Neuroophthalmology Section 5 p203-206

